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— Ya. M. Shapiro

— ABSTRACT: This work involves theoretical evaluation of the
— possibility of achieving simulated weightlessness and simu-
— lated gravitation over long periods of time. Included is a
— mathematical definition of weightlessness. It is shown that

the period of weightlessness achievable in an aircraft flying
a parabolic curve is less than 2 minutes. The conditions of
the creation of artificial gravitation in a satellite are
defined and some of the problems associated with the dyna-
mics of a solid body under the conditions of artificial

- gravitation are examined.

Petermination of Weightlessness

A body in alternating motion is in a state of.weightlessness when the

main- vector-of the -surface- forces—acting-on—-it-are“equal—to-zero:—
- Aerodynamic and reaction forces are the surface forces for any flying
apparatus. They are equal to zero under the conditions of the motion of a
spacecraft;.

A body in the state of weightlessness may experience internal forces
‘caused by surface forces. Air pressure in a spacecraft - is often maintained
Close to atmospheric pressure. The body of a cosmonaut thus experiences
internal forces of compression while the body of the spacecraft experiences
.forces of expansion, although, both are in a state of weightlessness. It is

ot the absence of internal forces that is characteristic of the conditions

of weightlessness, but their constancy for all points of the body, i.e., the
gradient of internal forces is equal to zero.

- The determination of weightlessness described herein is valid for the
‘Tonditions where the dimensions of the body are small in comparlson with
1he distance to the center of gravitation.

During motion in the central Newtonian field of gravitation, alternating

1nterna1 forces develop in a body. These forces are caused by the irregularity

of the gravitational field. By considering a body, for simplicity, as a
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uniform beam falling freely to the center of gravitation,

it is easy to show

that the greatest expanding forces will occur in the cross-section of the beam

‘passing through the center of its-mas

sz ~This is found from the expression

Where 1 is the length of the beam,

~ gravitation.

we find:

—  This value may be disregarded.

Artificial Weightlessness

of creating artificial weightlessness.,

‘to the sum of the aerodynamic forces R, the aircraft will be in a state of
weightlessness and will move in a parabollc trajectory like a body tossed

into a vacuum.

ﬁgrizon and travels in a parabolic trajectory.

1a1titude of maximum h will be:

By assuming for a near-earth satellite

R is the distance from its center to the center of gravitation,
Q is the force of attraction .of the beam to the

center of

From—the- def1n1t10n~of—we1ghtlessness—glven-here “we-derive the- method—-- -

If we maintain the condition on the
aircraft under which the thrust of the engine P at ‘any  given moment is equal

— For the value Voax = 680m/sec and o =

pr—

L

| The long term conditions of weightlessness can be created only during

time T ax’ as we see, does not exceed two minutes.

the flight of artificial earth satellites,

condltlons of cosmic flight.

RUAETY

o s P
45° we obtain Tmax =

We will evaluate the duration of continuous weightlessness, assuming that

an aircraft of altitude h attains maximum velocity'vm X at an angel o to the i

The time of flight at the

i.e., directly under the actual

98 sec. The
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Creation of Artificial Gravitation

—. Under the conditions of cosmie: fllght, art1f1c1a1 welght (grav1tat10n)
can be created, for all practical purposes, only by imparting a rotational
motion to the spacecraft. If the cosmonaut is thus located at a distance a
from the axis of rotation, the sensationwof.’normal weight" will correspond to
the condition aw? = g- Assuming that acceptable working conditions can be
provided for the cosmonaut with the partial restoration of weight, we will
proceed from the dependence aw? =ag, where a < 1. Let us evaluate the energy
balance for the creation of artificial gravitation.
— Let Q be the weight of the spacecraft;
- d is diameter;
— p the radius of earth inertia relative to the axis of rotation;
- - a the distance of the cosmonaut from the axis of rotationm.

A rotational moment M is created by two solid-fuel thrusters with a speci-
f1c thrust of P sp” When the thrusters are located at a distance of

from the axis of rotation, we have the: felatlons

, Assuming Q = 5000 kg, d = 5m, p= 0.35d, a = 2m, « = 0.5, and Pop = 200 sec,
ﬁf find that Qg = 4.8 kg. _ !
?‘ Thus with the expenditure of 5 kg of fuel it is possible to create the
condition of artificial gravity in a 5-ton spacecraft for the entire duration
of the flight of the craft. If the rotation of the spacecraft has to be ter-
minated prior to reentry it will be necessary to create the opposite rotational
moment by burning the same amount of fuel, i.e., about 5 kg (for o = 1,

Qe ™ 10 kg).

bértain Problems of Dynamics Under Conditions of Artificial Gravitation

In contrast to a virtually constant field of thrust at the surface of the
€drth, centrifugal forces in an artificial gravitational field increase

. Iinearly as the distance from the axis of rotation increases. Considering

the possibility of using mechanical instruments aboard a rotating spacecraft

T e “e o
PR S A e

oo

.
-y



it is advisable to consider certain features of the dynamics of solid fuel
under the conditions of artificial gravitation. It is convenient to analyze
these features by way of the exampleﬂof motion of a solid body around a
§;at10nary point. It is necessary to exclude the forces of gravitation from
the equations of motion, as applied to the counting system related to a revolv-
ing spacecraft, and to consider the:centzifugalk and Coriolis forces.

- Let us first examine the spherical pendulum. To the spacecraft we will
tie the right hand coordinate system Ofnt(Fig. 1), where O is the point from

which the pendulum is suspended, Oz is parallel to the angular velocity vector

— e ed -
w of the spacecraft, 00 = a is a perpendicular extending from the origin to

the vector w. The direction of axis &n is clear from the drawing. The posi-

'tlon of material point M of the pendulum is defined by the vectér radius A

or by angles o and 8, which are indicated 1n the drawings. The distance of
point M from the vector w will be

The vector of the centrlfugal force of
inertia is

(1)

and the moment of this force relative to the
origin of the coordinates is

or findlly,

Figure 1.
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The moment of this force relative to the origin is

4

It is clear from the last expression that Mg = 0 when the péndulum oscillates
in plane £0n. )

_ ‘Thus, when studying the motion of ‘the spherical pendulum, it is necessary

to consider the moments Hg and ﬁg given by formulas (2) and (4).

- Here,

We will notice that when the oscillations of the pendulum near the
artificial vertical line On are short the values of the first order of

smallness are a, R, 4, B, £, . Here M0 is the value of the first order

of smallness and Mk is the value of the second and highest order of smallness.

By discarding the values of the order of smallness greater than the first and
substituting

or finally,
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_ We will now consider the particular case of the oscillatign of the
spherical pendulum in the equitorial plane £On, where 8 = 0, 8 = 0, and
z-= 0, We obtain: ~

The pendulum completes its harmonic oscillations with the period:

If we select w from the condition amz = g, the period of oscillation
of the pendulum under the conditions of artificial gravitation will coincide
with the period of its oscillation at the surface of the earth:

When the point of suspension is located on the axis of rotation (a = 0),
Mg The pendulum then does not complete its harmonic oscillations.

We will now examine the case where the pendulum oscillates in the axial
plane ¢On. o

A -

Then o« = 0,4 = 0, and £ = 0. The equation for the oscillation of the /159
pendulum becomes: '

_. Thus the period of oscillation of the pendulum in the axial plane is less
than that in the equitorial plane. The difference Teq - Ty will decrease

with a reduction in the ratio %-.

A We will now consider the case of the motion of a solid body around a
stationary point, specifically, rotation at angles o and g (Fig. 2) where
the body does not revolve around axis Zé.
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For the purpose of computing the elementary
0

nate -system ¢xyz, which is related to the solid
body (Flg 2). We will place the origin of the
and we will dlrect axis y along the vector

" Figure 2. OC = Zc and axis x perpendicular to the plane of

moments dMC- and: dM we may use formulas (2) - (4).

Let us turn our attention to the right hand coordi-

coordinates at the center of the mass of the body

angle B such that O0xl0f for a = 0. We will assume

coordinates g, n, and ¢ through x, y, and z:

iiataxes, cxyz are the principal axes of inertia. We will then express the

(N

By substituting the values_of_§, .n, and ¢ from (7)., con51der1ng that for the

principal and central axis of inertia

(8)
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After substituting the values of the coordinates ¢, n, and ¢ from (7) we
I—i-]:.].l have:

- . 4 N - .

_ M= = 20aim k. + sinf-cosB-sina(/, — /)] -- -

_ e = 203w e A4 [y — [ cost B - £ sin2| cos q, (9) /160
£ & r . F . ' —

— M == 203m L (5, cosa -k i sina) + 2ud-sinf-cos B(/. - 1)) -

H f .
Here . ]0: T(/’- + ‘l)’ + /:)'

Finally, we will examine the particular case of the oscillation of the
physical pendulum in the equitorial plane. In this case 8 =0, 8 = 0 and

=0
§C ’ - ———— - - . B
A e aetm i - —aomd sing,
I E Ry ey ¢ ) s memeemema s s

Eéuation for oscillation will have the form:

/3= «—aviml sinz. .

However, in the case of small oscillations

»
avim.l,

- : 1 A el g =),
. l’. . [:
A-— ‘t..—-- - -
Hence
— . JE——
: 2w, S I
- 7 =2 S
ef © amele

gp = -(-zw'l.

1}}3 analyzing the oscillations in the axial plane(a = 0, ¢ =0, and §_ = 0) we

c
find:
e € e
. Mo =—oml (a4 )+ (/,—1)sin3-cosB] =
N = wimd sin (@ + [, cos ) — o (), — [ )sin3-cos B,
— Mi=0
8 o T
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1= Targ, S. M., Nevesomost', Weightlessness, Physical Encyclopedic Dictionary,

‘For small angles B the equation for the oscillations of the physical pendulum

. e - -

- Gl [m[’(a{/)jl._jlawo

il (a 4- 1() A= 1, ~—I_\

. SN
L~

—_ Eopy=(a + )2 27y
°pr t) md,

If the support of the physical pendulum passes through its mass center, then,
in contrast to the oscillation of the pendulum in a constant gravitational
field, in this case we have

“MEe= — 0t (]~ L) sindocosB £ 0, (10)

t:e., the physical pendulum, suspended from the mass center, is in a state of
1nvar1ab1e equilibrium only when I = Iy' This corresponds to the condition

where the axis of rotation of the pendulum, which passes through its mass
center, is its axis of symmetry. It is_clear from.expression (10) that -
when B = 0 stable equilibrium will occur only when Iz > Iy, i.e., the pendulum

has a tendency to be determined by the long side along the artificial vertical
On.
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